Asymmetric Synthesis of (1R,1'R)- and (1S, $1^{\prime} S$)-Bis(1-arylethyl)amines by way of a Diastereoselective Addition to Chiral Imines and Oxaxolidines with Organometallic Reagents

Kimio Higashiyama,* Hiroaki Inoue, Takayasu Yamauchi and Hiroshi Takahashi
Faculty of Pharmaceutical Science, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

The asymmetric synthesis of the bis(α-methylbenzyl)amines, ($1 R, 1^{\prime} R$)- and ($1 S, 1^{\prime} S$)-bis(1 -arylethyl)amines 6, utilizing a diastereoselective reaction of chiral imines and oxazolidines derived from (R)phenylglycinol with organometallic reagents, is described.

Chiral imines and oxazolidines, which are readily synthesized by the condensation of chiral 2 -aminoethanols or their N alkylated counterparts [such as (R)- N-alkylphenylglycinol] with aldehydes, ${ }^{1}$ react with various organometallic reagents in a highly diastereoselective manner, ultimately providing a route to chiral amines in both high chemical and optical yields. ${ }^{2}$ We have already reported the application of such reactions to the asymmetric syntheses of two piperidine alkaloids, $(R)-(-)$ coniine and $(2 R, 6 R)$ - $(+)$-dihydropinidine, ${ }^{3}$ and the indolizidine alkaloid (+)-monomorine 1. ${ }^{4}$

As part of a programme aimed at increasing the synthetic utility of this reaction, we have accomplished the asymmetric synthesis of ($1 R, 1^{\prime} R$)- and ($1 S, 1^{\prime} S$)-bis(arylethyl)amines, which are useful as both chiral bases and auxiliaries for stereoselective syntheses. ${ }^{5}$

Results and Discussion

The starting chiral imines $\mathbf{2 a - b}$ for the synthesis of the $\left(1 R, 1^{\prime} R\right)$ bis(α-methylbenzyl)amines $\mathbf{6 a - b}$ were prepared from the (R) phenylglycinol 1 and either benzaldehyde or thiophene-2-carbaldehyde under azeotropic conditions. The reaction of these chiral imines $\mathbf{2 a} \mathbf{a} \mathbf{b}$ with excess methyllithium in tetrahydrofuran at $-55^{\circ} \mathrm{C}$, afforded pairs of the diastereoisomeric amino alcohol 3a-b in 82 and 68% yields and in a ratio of $97: 3$ and $94: 6$, respectively. ${ }^{2}$ After separation of the major isomers by silica gel column chromatography, compounds $\left(1 R, 1^{\prime} R\right)-3 a-b$ were condensed with acetaldehyde in dichloromethane, in the presence of anhydrous magnesium sulfate, to give the desired oxazolidines $4 \mathbf{a}-\mathbf{b}$ in good yields. Treatment of the oxazolidine 4a with phenylmagnesium bromide in tetrahydrofuran at $-58^{\circ} \mathrm{C}$ furnished the tertiary amino alcohol 5a as a separable diastereoisomeric mixture, formed in a ratio of $76: 24$. Oxidative cleavage of the major isomer with lead tetraacetate provided the bis(α-methylbenzyl)amine ($1 R, 1^{\prime} R$)-bis(1 -phenylethyl)amine 6 a in 84% yield. The spectroscopic data for compound ($1 R, 1^{\prime} R$)-6a, including the specific optical rotation, were identical with those already reported. ${ }^{6}$ In a similar manner, the oxazolidine $\mathbf{6 b}$ was treated with 2-thienylmagnesium bromide to give a diastereoisomeric mixture of compound $\mathbf{5 b}$ in a ratio of $84: 16$. Although it was not possible to isolate the major product, the diastereoisomeric mixture of compound $\mathbf{5 b}$ was readily converted into the secondary amine $\mathbf{6 b}$ by oxidative cleavage. Further, the major isomer $\left(1 R, I^{\prime} R\right)-6 b$ could be isolated from the diastereoisomeric mixture by the preferential crystallization of its HCl salt.

Alternatively, the enantiomers ($1 S, 1^{\prime} S$)-bis(1-arylethyl)amines $6 \mathbf{a - b}$ were synthesized as follows. Condensation of (R) phenylglycinol 1 with benzophenone by heating in toluene with azeotropic removal of the water and the subsequent reduction of resulting imine 7 with lithium aluminium hydride afforded

$\left(1 R, 1^{\prime} R\right)-6 a-b \quad\left(1^{\prime} R, 2 R\right)-5 a-b \quad\left(1^{\prime} R, 2 R, 4 R\right)-4 a-b$
Scheme 1 Reagents and conditions: i, carbaldehyde. $\mathrm{C}_{6} \mathrm{H}_{6}$; ii, MeLi, THF, $-55^{\circ} \mathrm{C}$; iii, acetaldehyde, $\mathrm{MgSO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, Grignard reagent, THF, $-58^{\circ} \mathrm{C} ; \mathrm{v}, \mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{C}_{6} \mathrm{H}_{6}$
the ($2 R$)-amino alcohol 9 in 60% yield over the two steps. This was then condensed with benzaldehyde dimethyl acetal or thiophene-2-carbaldehyde dimethyl acetal in the presence of 4methylbenzenesulfonic acid in refluxing toluene to give the chiral oxazolidines $10 a-b$ as a crystalline solid. These products consisted mainly of the thermodynamic product; ${ }^{7}$ the minor component amounted to less than 10% as judged from the ${ }^{1} \mathrm{H}$ NMR spectra. The reaction of compound $10 a-b$ with methylmagnesium bromide in tetrahydrofuran at room temperature furnished the tertiary amino alcohols 11a-b as separable diastereoisomeric mixtures in 82 and 69% yields and in a ratio of $94: 6$ and $98: 2$, respectively. After separation of the major isomers, the removal of the N-diphenylmethyl group in the compounds ($1 S, 1^{\prime} R$)-11a-b was performed by treatment with 15% hydrochloric acid in ethanol to afford the secondary amine ($1^{\prime} S, 2 R$)-3a in 82% yield from 11a but gave none of the desired product from compound 11 b . Although the above deprotection of compound 11 failed, the compound ($1^{\prime} S, 2 R$)-3b was readily prepared by an alternate route. The imine 8 , prepared from (R)-phenylglycinol 1 and 2 -acetylthiophene, was reduced with sodium bis(2-methoxyethyl)aluminium hydride ($\mathrm{Red}-\mathrm{Al}$) in toluene to give the secondary amino alcohol 11b as a separable diastereoisomeric mixture in good yield and in a ratio of $97: 3$. The condensation of the major isomers ($1^{\prime} S, 2 R$)-3a-b with the corresponding aldehyde dimethylacetal in toluene gave an inseparable diastereoisomeric mixture of the oxazolidines $\mathbf{1 2 a - b}$. Subsequent reaction with methylmagnesium bromide in refluxing tetrahydrofuran afforded the tertiary amines $\mathbf{5 a - b}$ as a separable diastereoisomeric mixture in good yield and in a ratio of $95: 5$ and $98: 2$, respectively. Finally, oxidative cleavage of the major isomers (1'S,2R)-15a-b provided the (1S,1'S)-bis(1-arylethyl)amines 6a-b in 84 and 72% yields.

$\left(1^{\prime} S, 2 R, 4 R\right)-12 a-b \quad\left(1^{\prime} S, 2 R\right)-5 a-b \quad\left(1 S, 1^{\prime} S\right)-6 a-b$
Scheme 2 Reagents and conditions: i, benzophenone, 4-methylbenzenesulfonic acid, toluene; $\mathrm{ii}, \mathrm{LiAlH}_{4}, \mathrm{THF}$; iii, aldehyde dimethyl acetal, 4-methylbenzenesulfonic acid, toluene; $\mathrm{iv}, \mathrm{MeMgBr}, \mathrm{THF}$, room temp.; v, $\mathrm{HCl}-\mathrm{EtOH}$; vi, 2-acetylthiophene, 4-methylbenzenesulfonic acid, $\mathrm{C}_{6} \mathrm{H}_{6}$; vii, Red-Al, toluene, $-58^{\circ} \mathrm{C}$; viii, $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{C}_{6} \mathrm{H}_{6}$

Thus, we achieved the asymmetric synthesis of the bis $(\alpha-$ methylbenzyl)amines, ($1 R, 1^{\prime} R$)- and ($1 S, l^{\prime} S$)-bis(1-arylethyl)amines $\mathbf{6 a - b}$, by employing the diastereoselective reaction of chiral imines and oxazolidines derived from a single enantiomeric source.

Experimental

General Methods.-M.p.s were measured with a Yanagimoto-Micro Melting Point apparatus and are uncorrected. IR spectra were recorded on a 215 Hitachi Grating I.R. spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a JEOL PMX 270 instrument, and chemical shifts are reported in ppm on the δ scale using tetramethylsilane as the internal reference. Mass spectra were measured with a JEOL JMS D-300 spectrometer by using the chemical ionization (CI) (isobutane) method. Optical rotations were taken with a JASCO-DIP-370 polarimeter.

Condensation of (R)-Phenylglycinol $\mathbf{1}$ with an Aldehyde.-A mixture of phenylglycinol $(R)-1(10.0 \mathrm{~g}, 72.9 \mathrm{mmol})$ and an aldehyde [benzaldehyde and thiophene-2-carbaldehyde (73.0 $\mathrm{mmol})$] in benzene ($50 \mathrm{~cm}^{3}$) was refluxed for 3 h using a DeanStark apparatus. After cooling, the reaction mixture was concentrated under reduced pressure to leave a crystalline residue, which was purified by recrystallization from hexane to give the imines $\mathbf{2 a - b}$ as crystals.
(2R)-(E)-2-(Benzylideneamino)-2-phenylethanol 2a.-Colourless prisms; yield 94%; m.p. $78^{\circ} \mathrm{C}$ (from hexane-diethyl ether); $[\alpha]_{D}^{25}+48.8\left(c 1.07, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1640(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.90(1$ $\mathrm{H}, \mathrm{dd}, J 7.9$ and $\left.11.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.97(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and 11.0 , $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), 4.50(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $7.9, \mathrm{PhCHN}$), $7.24-7.82$ (10 H, m, aromatic H) and $8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH})$; whose spectral data were identical with those of an authentic specimen. ${ }^{2}$
(2R)-(E)-2-Phenyl-2-(2-thienylmethylideneamino)ethanol 2b. -Yellowish prisms; yield 98% m.p. $101^{\circ} \mathrm{C}$ (from hexanediethyl ether); $[\alpha]_{\mathrm{D}}^{25}+150.5$ (c $1.00, \mathrm{CHCl}_{3}$) (Found: $\mathrm{C}, 67.4$; H, 5.7; N, 6.2. Calc. for $\mathrm{C}_{13} \mathrm{H}_{13}$ NOS: C, 67.52; H, 5.67; N, $6.06 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1620(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $2.39(1 \mathrm{H}$, br s, OH), $3.83-3.99(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.47(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $8.8, \mathrm{PhCHN}), 7.05(1 \mathrm{H}, \mathrm{dd}, J$ 3.7 and 4.9 , aromatic H$), 7.25-7.42(7 \mathrm{H}, \mathrm{m}$, aromatic H$)$ and $8.44(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}) ; m / z(\mathrm{EI}) 200\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}\right)$.

Reaction of the Imines (R)-2a-b with Methyllithium.Methyllithium ($133.2 \mathrm{mmol} ; 0.8 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in diethyl ether) was added dropwise at $-55^{\circ} \mathrm{C}$ to a stirred solution of one of the imines ($2 \mathbf{a}-\mathbf{b}$) $(10.0 \mathrm{~g}, 44.4 \mathrm{mmol})$ in dry THF ($500 \mathrm{~cm}^{3}$) under nitrogen, over a 50 min period. After the reaction mixture had been stirred at room temperature for 15 h , it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}\left(200 \mathrm{~cm}^{3}\right)$ and then extracted with ethyl acetate $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave a pale yellow oil, which was subjected to column chromatography on silica gel with $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 20)$ to give a diastereoisomeric mixture of the amine ($\mathbf{2 a}$ or $\mathbf{2 b}$).
(1'R,2R)-2-Phenyl-2-[N-(1'-phenylethyl)amino]ethanol 3a. Colourless oil; yield $82 \% ;{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $97: 3$ ratio of diastereoisomers, which were separated by column chromatography. For the ($1^{\prime} R, 2 R$)-isomer (major product); colourless needles; yield 52%; m.p. $48^{\circ} \mathrm{C}$ (from diethyl ether); $[\alpha]_{\mathrm{D}}^{25}-27.8$ (c 1.04, CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37(3 \mathrm{H}, \mathrm{d}, J$ 6.7, CHMe), $2.58(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ and NH$), 3.51(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J 7.9\right.$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.88$ ($1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe}$), $3.97(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $7.9, \mathrm{PhCHN}$) and 7.13-7.38 ($10 \mathrm{H}, \mathrm{m}$, aromatic H); m / z (CI, isobutane) 242 $\left(\mathrm{M}^{+}+1\right)$; whose spectral data were identical with those of an authentic specimen. ${ }^{16}$
(1'R,2R)-2-\{N-[1'-(2-Thienyl)ethyl]amino\}-2-phenylethanol 3b. Pale yellow oil; yield $68 \% ;{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $96: 4$ ratio of diastereoisomers, which were separated by column chromatography. For the ($2 R, l^{\prime} R$)isomer (major product); pale yellow oil; yield 51%; $[\alpha]_{D}^{25}-20.0$ (c $1.13, \mathrm{CHCl}_{3}$) (Found: $\mathrm{C}, 68.2 ; \mathrm{H}, 6.9 ; \mathrm{N}, 5.9$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOS}: \mathrm{C}, 67.99 ; \mathrm{H}, 6.93 ; \mathrm{N}, 5.66 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}), 2.27(2$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ and NH$), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J 4.9\right.$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.69\left(1 \mathrm{H}\right.$, dd, $J 7.9$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.74(1 \mathrm{H}$, dd, $J 4.9$ and 7.9, PhCHN), $4.05(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe}$), $6.84(1 \mathrm{H}, \mathrm{d}, J 3.7$, aromatic H$), 6.87(1 \mathrm{H}$, dd, $J 3.7$ and 4.9 , aromatic H$), 7.17$ $(1 \mathrm{H}, \mathrm{m}$, aromatic H$)$ and $7.25-7.37(5 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z$ (CI, isobutane) $248\left(\mathrm{M}^{+}+1\right)$.

Condensation of the ($2 \mathrm{R}, \mathrm{I}^{\prime} \mathrm{R}$)-Amino Alcohols $\mathbf{3 a - b}$ with Acetaldehyde.-To a solution of amine $3 \mathbf{a}-\mathbf{b}(3.23 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right.$) in the presence of anhydrous $\mathrm{MgSO}_{4}(2.0 \mathrm{~g})$ was added dropwise a solution of acetaldehyde ($0.45 \mathrm{~g}, 9.76$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ over a 10 min period at $0^{\circ} \mathrm{C}$. After the reaction mixture had been stirred for 20 h at room temperature, it was filtered through Celite and the filtrate was concentrated under reduced pressure. The crude oxazolidine 4a-b was obtained and purified by column chromatography on silica gel with hexane-ethyl acetate ($6: 1$).
(1'R,2R,4R)-2-Methyl-4-phenyl-N-(1'-phenylethyl)oxazolidine 4a. Pale yellow oil; yield 78%. An analytical sample was purified by Kugelrohr distillation; oven temperature $170^{\circ} \mathrm{C}$ $(2.0 \mathrm{mmHg}) ;[\alpha]_{\mathrm{D}}^{25}-100(c 1.10$, EtOH) (Found: C, $80.6 ; \mathrm{H}$, 8.0; N, 5.2. Calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 80.86 ; \mathrm{H}, 7.92 ; \mathrm{N}, 5.24 \%$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30(3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{CHMe}), 1.34(3 \mathrm{H}, \mathrm{d}, J$ $7.3, \mathrm{PhCHMe}$), 3.72 (1 H , dd, $J 5.5,7.9, \mathrm{CH}_{2} \mathrm{O}$), $3.97(1 \mathrm{H}, \mathrm{q}, J$
7.3, PhCHMe), 4.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH}_{2} \mathrm{O}$), 4.73 ($1 \mathrm{H}, \mathrm{q}, J 5.5$, $\mathrm{CHMe})$ and $7.23-7.37(10 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z(\mathrm{CI}$, isobutane) $268\left(\mathrm{M}^{+}+1\right)$.
($1^{\prime} \mathrm{R}, 2 \mathrm{R}, 4 \mathrm{R}$)-2-Methyl-4-phenyl-N-[1'-(2-thienyl)ethyl]oxazolidine $\mathbf{4 b}$. Yellow oil; yield 74%. An analytical sample was purified by Kugelrohr distillation; oven temperature $200^{\circ} \mathrm{C}$ $(7.0 \mathrm{mmHg}) ;[\alpha]_{\mathrm{D}}^{25}-90.7$ (c 1.40, EtOH) (Found: C, $70.4 ; \mathrm{H}$, 7.1; N, 5.1. Calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NOS}$: C, 70.31; H, 7.01; N, 5.13\%); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32(3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{CHMe}), 1.37(3 \mathrm{H}, \mathrm{d}, J$ 7.3, NCHMe), 3.71 ($1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $7.9, \mathrm{CH}_{2} \mathrm{O}$), $4.00(1 \mathrm{H}, \mathrm{t}$, $\left.J 7.9, \mathrm{PhCHCH}_{2} \mathrm{O}\right), 4.21(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $5.5, \mathrm{PhCHCH} 2 \mathrm{O})$, 4.22 ($1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{NCHMe}$, 4.72 ($1 \mathrm{H}, \mathrm{q}, J 5.5, \mathrm{CHMe}$, 6.87 (1 $\mathrm{H}, \mathrm{d}, J 3.7$, aromatic H), $6.93(1 \mathrm{H}, \mathrm{dd}, J 3.7$ and 4.9 , aromatic H) and $7.20-7.4(6 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z(\mathrm{CI}$, isobutane) 274 $\left(\mathrm{M}^{+}+1\right)$.

Reaction of the Oxazolidines $4 \mathbf{a}-\mathbf{b}$ with Grignard Reagents.The Grignard reagent $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}\right.$ or $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{SMgBr}$ (12.3 mmol)] was added dropwise at $-58^{\circ} \mathrm{C}$ to a solution of the oxazolidine 5a-b (4.4 mmol) in dry THF ($40 \mathrm{~cm}^{3}$), under nitrogen, over a 10 min period. The resulting mixture was warmed up to room temperature, stirred for 20 h , then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave the residue, which was subjected to column chromatography on silica gel with hexane-ethyl acetate (6:1) to give a diastereoisomeric mixture of the amino alcohol 5 a-b as an oil.
(1'R,2R)-2-Phenyl-2-[N-bis(1'-phenylethyl)amino]ethanol
5a. Pale yellow oil; yield $72 \% \cdot{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $76: 24$ ratio of diastereoisomers, which were separated by column chromatography. For the ($1^{\prime} R, 2 R$)-isomer (major product); pale yellow oil; yield 52\%; [$\alpha]_{\mathrm{D}}{ }^{5}+7.2$ (c 1.13, EtOH) (Found: C, 83.5; H, 7.9; N, 3.9. Calc. for $\mathrm{C}_{24} \mathrm{H}_{2} 7 \mathrm{NO}: \mathrm{C}$, $83.44 ; \mathrm{H}, 7.88 ; \mathrm{N}, 4.05 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36(6 \mathrm{H}, \mathrm{d}$, $J 7.3, \mathrm{CH} M e), 1.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.40(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $\left.11.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J 7.2\right.$ and $\left.11.0, \mathrm{CH}_{2} \mathrm{OH}\right), 4.04$ ($1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $9.2, \mathrm{PhC} H \mathrm{~N}), 4.36(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{C} H \mathrm{Me})$ and $7.10-7.53(15 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z(\mathrm{CI}$, isobutane) 346 $\left(\mathrm{M}^{+}+1\right)$.
(1'R,2R)-2-Phenyl-2-\{ N -bis[1'-(2-thienyl)ethyl]amino\}ethanol $\mathbf{5 b}$. Yellowish oil; yield 53%. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $84: 16$ ratio of diastereoisomers, which were inseparable by column chromatography (Found: C, 67.1; H, 6.7; $\mathrm{N}, 3.7$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NOS}_{2}$: $\mathrm{C}, 67.21 ; \mathrm{H}, 6.49$; N , 3.92%). For the ($1^{\prime} R, 2 R$)-isomer (major product); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; CDCl_{3}) $1.46(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH} M e), 1.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.53(1$ $\mathrm{H}, \mathrm{dd}, J 7.9$ and $\left.11.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.91(1 \mathrm{H}, \mathrm{dd}, J 6.1$ and 11.0 , $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.14$ ($1 \mathrm{H}, \mathrm{dd}, J 6.1$ and $\left.7.9, \mathrm{PhCHH}\right), 4.55(2 \mathrm{H}, \mathrm{q}, J$ 6.7, CHMe), 6.87-6.93 ($4 \mathrm{H}, \mathrm{m}$, aromatic H) and 7.20-7.53 (7 H, m, aromatic H$) ; m / z\left(\mathrm{CI}\right.$, isobutane) $358\left(\mathrm{M}^{+}+1\right)$.

Oxidation of the Amino Alcohols 5a-b with Lead Tetraacetate.-To a stirred solution of the amino alcohol 5a-b (0.87 mmol) in benzene ($20 \mathrm{~cm}^{3}$) was added lead tetraacetate ($0.77 \mathrm{~g}, 1.74 \mathrm{mmol}$) in one portion and the mixture was stirred for 4 h at room temperature. After treatment with diluted hydrochloric acid ($3 \mathrm{~cm}^{3}$), the reaction mixture was basified with saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution and extracted with benzene ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure to leave a residue, which was subjected to column chromatography on silica gel with hexane-diethyl ether (3:1-6:1) to give the amine $\mathbf{6 a - b}$.
(1R,1'R)-Bis(1-phenylethyl)amine 6a. Colourless oil; yield 84%. An analytical sample was purified by Kugelrohr distillation; oven temperature $160^{\circ} \mathrm{C}(7.0 \mathrm{mmHg}) ;[\alpha]_{\mathrm{D}}{ }^{5}+158$
(c $3.30, \mathrm{EtOH})\left\{\right.$ lit., $\left.{ }^{6}\left(1 S, 1^{\prime} S\right)-6 \mathrm{a} ;[\alpha]_{\mathrm{D}}^{25}-157(c 2.40, \mathrm{EtOH})\right\}$. $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}), 1.60(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 3.50(2 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe})$ and $7.20-7.35(10 \mathrm{H}, \mathrm{m}$, aromatic H); m / z (CI, isobutane) $226\left(\mathrm{M}^{+}+1\right.$); whose spectral data were identical with those reported. ${ }^{6}$
($1 \mathrm{R}, \mathrm{I}^{\prime} \mathrm{R}$)-Bis[1-(2-thienyl)ethyl]amine $\mathbf{6 b}$. Colourless oil; yield $75 \% \cdot{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a 84:16 ratio of diastereoisomers, which were inseparable by column chromatography. An analytical sample was purified by Kugelrohr distillation; oven temperature $130^{\circ} \mathrm{C}(7.0 \mathrm{mmHg})$ (Found: C, 60.7; H, 6.4; N, 5.9. Calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NS}_{2}$: C, 60.75; $\mathrm{H}, 6.37$; $\mathrm{N}, 5.90 \%$). For the ($1 R, 1^{\prime} R$)-isomer (major product); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.39(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}), 2.04(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 4.00(2 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe}), 6.84(2 \mathrm{H}, \mathrm{d}, J 3.1$, aromatic H), $6.95(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and 4.9, aromatic H) and $7.21(2 \mathrm{H}, \mathrm{d}, J$ 4.9, aromatic H$) ; m / z\left(\mathrm{CI}\right.$, isobutane) $238\left(\mathrm{M}^{+}+1\right)$. For the ($1 R, 1$ 'S)-isomer (minor product); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.46 ($6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}$), $2.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $4.14(2 \mathrm{H}, \mathrm{q}, J$ 6.7, $\mathrm{C} H \mathrm{Me}$); the ($1 R, 1^{\prime} R$)-isomer could be obtained in a pure form by recrystallization of its HCl salt: colourless needles; m.p. $192^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[x]_{\mathrm{D}}^{25}+46.5$ (c 1.00 , EtOH).
(2R)-2-[N-(Diphenylmethylidene)amino $]-2-p h e n y l e t h a n o l ~ 7 . ~$ -A mixture of phenylglycinol $(R)-1(20.0 \mathrm{~g}, 145.8 \mathrm{mmol})$, benzophenone ($26.6 \mathrm{~g}, 146.0 \mathrm{mmol}$) and 4-methylbenzenesulfonic acid ($1.0 \mathrm{~g}, 5.8 \mathrm{mmol}$) in toluene ($300 \mathrm{~cm}^{3}$) was refluxed for 40 h using a Dean-Stark apparatus. After cooling, the mixture was poured into $200 \mathrm{~cm}^{3}$ of saturated aqueous NaHCO_{3}, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{C}_{6} \mathrm{H}_{6}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was crystallized to afford the imine $7(26.36 \mathrm{~g}, 60 \%)$ as colourless needles, m.p. $125-126^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $[x]_{\mathrm{D}}^{25}$ -27.61 (c 1.03, CHCl_{3}) (Found: C, 83.7; H, 6.3; N, 4.6. Calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 83.69 ; \mathrm{H}, 6.35 ; \mathrm{N}, 4.65 \%$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ $3460(\mathrm{OH})$ and $1660(\mathrm{C}=\mathrm{N})$; imine component; $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.81(1 \mathrm{H}$, dd, $J 4.3$ and 10.4 , $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.98\left(1 \mathrm{H}, \mathrm{dd}, J 7.6\right.$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right), 4.56(1 \mathrm{H}, \mathrm{dd}$, $J 4.3$ and $7.6, \mathrm{PhCHN})$ and $7.02-7.75(15 \mathrm{H}, \mathrm{m}$, aromatic H$)$; oxazolidine component; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), $3.87(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{PhCHN}), 4.24\left(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{OH}\right)$, $4.38\left(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $7.02-7.75(15 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{H}) ; m / z\left(\mathrm{CI}\right.$, isobutane) $302\left(\mathrm{M}^{+}+1\right)$.
(2R)-2-(Diphenylmethyl)amino-2-phenylethanol 9.-To a suspension of lithium aluminium hydride ($4.5 \mathrm{~g}, 118.58 \mathrm{mmol}$) in dry THF ($200 \mathrm{~cm}^{3}$) at room temperature was added dropwise a solution of the imine $7(25.0 \mathrm{~g}, 82.41 \mathrm{mmol})$ in THF $\left(100 \mathrm{~cm}^{3}\right)$ over a 20 min period. The reaction mixture was refluxed for 2.5 h after which the excess hydride was decomposed by the slow addition of water $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was filtered through a little Celite. Evaporation of the filtrate gave a colourless oil, which was distilled to give the amino alcohol $9(24.9 \mathrm{~g}, 99 \%)$ as a colourless, viscous oil, b.p. $274{ }^{\circ} \mathrm{C}(1.1 \mathrm{mmHg}) ; v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ $3500(\mathrm{OH}) ;[\alpha]_{\mathrm{D}}^{25}-74.58$ (c $3.90, \mathrm{CHCl}_{3}$) (Found: C, 83.3; H, 6.9; N, 4.6. Calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 83.15 ; \mathrm{H}, 6.98$; $\mathrm{N}, 4.62 \%$); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.38(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ and NH$), 3.58(1 \mathrm{H}$, dd, $J 8.5$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.66(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and 10.4 , $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.72(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $8.5, \mathrm{PhCHN}), 4.71(1 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}_{2} \mathrm{CH}$) and $7.15-7.39$ ($15 \mathrm{H}, \mathrm{m}$, aromatic H); m / z (CI, isobutane) $304\left(\mathrm{M}^{+}+1\right)$.

Condensation of (2R)-N-(Diphenylmethyl)-2-phenylglycinol 9 with Carbaldehyde Dimethyl Acetals.-A mixture of an aromatic aldehyde dimethyl acetal [benzaldehyde dimethyl acetal or thiophene-2-carbaldehyde dimethyl acetal (66.0
$\mathrm{mmol})]$, the amino alcohol $(R)-8(16.7 \mathrm{~g}, 55.0 \mathrm{mmol})$ and a catalytic amount of 4-methylbenzenesulfonic acid in toluene ($150 \mathrm{~cm}^{3}$) was refluxed for 48 h . After being cooled, the reaction mixture was poured into saturated aqueous NaHCO_{3}, the phases were separated, and the aqueous phase was extracted with $\mathrm{C}_{6} \mathrm{H}_{5}\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave a crystalline residue, which was purified by recrystallization to give a diastereoisomeric mixture of the oxazolidine $10 \mathrm{a}-\mathrm{b}$.
($2 \mathrm{R}, 4 \mathrm{R}$)-2,4-Diphenyl- N -(diphenylmethyl)oxazolidine 10a. Colourless needles; yield 72%; m.p. $130{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane). ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a 89:11 ratio of diastereoisomers, which were inseparable by column chromatography; $[\alpha]_{\mathrm{D}}^{25}-13.54$ (c $1.00, \mathrm{CHCl}_{3}$) (Found: C, 86.0; H, 6.4; N, 3.5. Calc. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 85.90$; $\mathrm{H}, 6.44 ; \mathrm{N}, 3.85 \%$). For the ($2 R, 4 R$)-isomer (major product); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.90\left(1 \mathrm{H}, \mathrm{dd}, J 6.1\right.$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{O}\right), 4.22(1$ H , dd, $J 6.1$ and $7.3, \mathrm{PhCHCH}_{2} \mathrm{O}$), $4.32(1 \mathrm{H}$, dd, $J 7.3$ and 8.5 , $\mathrm{CH}_{2} \mathrm{O}$), $5.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{2} \mathrm{CH}\right), 5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHO})$ and $7.01-$ $7.45(20 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z\left(\mathrm{CI}\right.$, isobutane) $392\left(\mathrm{M}^{+}+1\right)$. (2R,4R)-4-Phenyl-N-(diphenylmethyl)-2-(2-thienyl)oxazolidine 10 b . Colourless prisms; yield 73%; m.p. $129^{\circ} \mathrm{C}$ (from EtOH). ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a 90:10 ratio of diastereoisomers, which were inseparable by column chromatography. $[\alpha]_{\mathrm{D}}^{25}-8.83\left(c 1.20, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 78.5 ; \mathrm{H}, 5.8 ; \mathrm{N}, 3.6$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{23}$ NOS: C, 78.57 ; H, 5.83; $\mathrm{N}, 3.58 \%$). For the ($2 R, 4 R$)-isomer (major product); $\delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $3.96\left(1 \mathrm{H}, \mathrm{dd}, J 7.3\right.$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{O}\right), 4.22(1 \mathrm{H}, \mathrm{t}$, $J 7.3, \mathrm{PhCHCH}_{2} \mathrm{O}$), $4.34\left(1 \mathrm{H}, \mathrm{dd}, J 7.3\right.$ and $8.5, \mathrm{CH}_{2} \mathrm{O}$), 5.12 (1 $\mathrm{H}, \mathrm{s}, \mathrm{Ph}_{2} \mathrm{CH}$), 5.91 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NCHO}$) and $7.02-7.47(16 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z\left(\mathrm{CI}\right.$, isobutane) $398\left(\mathrm{M}^{+}+1\right)$.

Reaction of the Oxazolidines (2R,4R)-10a-b with Methylmagnesium Bromide.-Methylmagnesium bromide ($15.3 \mathrm{mmol} ; 3$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$ solution in diethyl ether) was added dropwise to a stirred solution of the oxazolidine $\mathbf{1 0 a - b}(7.6 \mathrm{mmol})$ in dry THF ($50 \mathrm{~cm}^{3}$) at room temperature and under nitrogen, over a 10 min period. After the reaction mixture had been stirred at $40{ }^{\circ} \mathrm{C}$ for 6 days, it was quenched with water ($3 \mathrm{~cm}^{3}$) and diluted with diethyl ether ($20 \mathrm{~cm}^{3}$). The resulting white precipitate was filtered off, and the filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$. The phases were separated, and the aqueous phase was extracted with diethyl ether ($2 \times 30 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave an oily residue, which was subjected to column chromatography on silica gel with diethyl ether-hexane (2:1) to give a diastereoisomeric mixture of the amino alcohol 11a-b as an oil.
(1'R,2S)- And (1'S,2R)-2-[N-(1'-phenylethyl)-N-(diphenyl-methyl)amino]-2-phenylethanol $11 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a 6:94 ratio of diastereoisomers, which were separated by column chromatography. For the isomer ($1^{\prime} S, 2 R$)-11a (major product); colourless oil; yield 82%; $[\alpha]_{\mathrm{D}}^{25}-35.80\left(c 1.17, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+}, 407.2241$. Calc. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}: M, 407.2247$); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.46 ($3 \mathrm{H}, \mathrm{d}, J$ 6.7, CHMe), 1.78 ($1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}$), $3.94(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{OH}), 4.41$ ($1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{PhCHCH} 2 \mathrm{OH}), 4.46(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe}), 5.28$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{2} \mathrm{CH}$) and 6.82-7.36 ($20 \mathrm{H}, \mathrm{m}$, aromatic H); $m / z(\mathrm{CI}$, isobutane) $408\left(\mathrm{M}^{+}+1\right)$. For the isomer ($\left.1^{\prime} R, 2 R\right)-11 \mathrm{a}$ (minor product); colourless needles; yield 3%; m.p. $132{ }^{\circ} \mathrm{C}$ (from hexane-ethyl acetate); $[\alpha]_{\mathrm{D}}^{25}+63.44$ (c 1.04, CHCl_{3}) (Found: $\mathrm{C}, 85.3 ; \mathrm{H}, 7.1$; $\mathrm{N}, 3.4$. Calc. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C}, 85.46 ; \mathrm{H}, 7.17$; $\mathrm{N}, 3.44 \%$); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{CHMe}$), 2.09-2.13 (1 H, m, OH), 3.68-3.77 (1 H, m, CH2OH), 3.93-4.02 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.35-4.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH} \mathrm{O}_{2} \mathrm{OH}\right.$ and $\mathrm{CHMe}), 5.18\left(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{2} \mathrm{CH}\right)$ and $7.00-7.39(20 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{H}) ; m / z\left(\mathrm{CI}\right.$, isobutane) $408\left(\mathrm{M}^{+}+1\right)$.
(1 ' $\mathrm{R}, 2 \mathrm{R}$)- And ($\left.1^{\prime} \mathrm{S}, 2 \mathrm{R}\right)-2-\left\{\mathrm{N}-(\right.$ diphenylmethyl $)-\mathrm{N}-\left[1^{\prime}-(2-\right.$ thienyl)ethyl]amino $\}$-2-phenylethanol 11b. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $2: 98$ ratio of diastereoisomers, which were separated by column chromatography. For the isomer (1 ' $S, 2 R$)-10b (major product); colourless oil; yield 69%; $[\alpha]_{\mathrm{D}}^{25}-16.62\left(c 1.42, \mathrm{CHCl}_{3}\right)$ (Found: C, 78.7; H, 6.6; N, 3.7. Calc. for $\left.\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NOS}: \mathrm{C}, 78.42 ; \mathrm{H}, 6.58 ; \mathrm{N}, 3.39 \%\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.56(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CHMe}), 1.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $3.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.41\left(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{PhCHCH}_{2} \mathrm{OH}\right), 4.71$ $(1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{C} H \mathrm{Me}), 5.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{2} \mathrm{CH}\right), 6.40(1 \mathrm{H}, \mathrm{d}, J 3.7$, aromatic H), 6.79-6.84 ($3 \mathrm{H}, \mathrm{m}$, aromatic H) and 7.16-7.39 (14 H, m, aromatic H$) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}\right.$, isobutane) $414\left(\mathrm{M}^{+}+1\right)$. For the isomer ($1^{\prime} R, 2 R$)-10b (minor product); colourless needles; yield 1.4%; m.p. $115^{\circ} \mathrm{C}$ (from hexane-ethyl acetate); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}), 2.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.65-$ $3.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.98-4.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.36(1 \mathrm{H}$, $\left.\mathrm{t}, J 7.3, \mathrm{PhCHCH}_{2} \mathrm{OH}\right), 4.62(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{C} H \mathrm{Me}), 5.21(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Ph}_{2} \mathrm{CH}\right), 6.47(1 \mathrm{H}, \mathrm{d}, J 3.7$, aromatic H), $6.76(1 \mathrm{H}$, dd, $J 3.7$ and 4.9, aromatic H) and $7.02-7.40(16 \mathrm{H}, \mathrm{m}$, aromatic H$) ; \mathrm{m} / \mathrm{z}$ (CI, isobutane) $414\left(\mathrm{M}^{+}+1\right)$.
(1'S,2R)-2-Phenyl-2-[N-(1'-phenylethyl)amino]ethanol 3a.A solution of the isomer ($\left.1^{\prime} S, 2 R\right)-11 \mathrm{a}(1.9 \mathrm{~g}, 4.7 \mathrm{mmol})$ in concentrated hydrochloric acid-ethanol ($1: 2 ; 60 \mathrm{~cm}^{3}$) was heated under reflux for 3 h . After being cooled to room temperature, the reaction mixture was diluted with water (50 cm^{3}) and washed with diethyl ether ($20 \mathrm{~cm}^{3}$). The resulting aqueous phase was basified with $20 \% \mathrm{NaOH}$ solution and extracted with ethyl acetate ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave an oily residue, which was subjected to column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(99: 1)$ to give the (1'S, 2 R)-isomer 3a $(0.91 \mathrm{~g}, 82 \%)$ as colourless prisms; m.p. $75^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}^{25}-182.0$ (c $1.02, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.32(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}), 2.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.45-$ $3.60\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH} \mathrm{C}_{2} \mathrm{OH}\right), 3.63(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe})$ and 7.17-7.39 ($10 \mathrm{H}, \mathrm{m}$, aromatic H); $m / z\left(\mathrm{CI}\right.$, isobutane) $242\left(\mathrm{M}^{+}\right.$ $+1)$; whose spectral data were identical with those reported. ${ }^{6}$
(1'S,2R)-2-Phenyl-2-\{ $\mathrm{N}-[1$ '-(2-thienyl)ethyl]amino\}ethanol 3b.-A mixture of phenylglycinol $(R)-1(6.86 \mathrm{~g}, 50 \mathrm{mmol}), 2-$ acetylthiophene ($6.93 \mathrm{~g}, 55 \mathrm{mmol}$) and a catalytic amount of 4methylbenzenesulfonic acid in benzene ($50 \mathrm{~cm}^{3}$) was refluxed for 20 h using a Dean-Stark apparatus. After being cooled, the mixture was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, the organic layer was separated and the aqueous layer was extracted with $\mathrm{C}_{6} \mathrm{H}_{6}\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave an oily residue, which was purified by Kugelrohr distillation to give the imine $8(11.77 \mathrm{~g}, 96 \%)$ as a yellowish oil, oven temperature $130^{\circ} \mathrm{C}(4.0 \mathrm{mmHg}) ;[\alpha]_{\mathrm{D}}{ }^{5}$ +145.78 (c $5.60, \mathrm{CHCl}_{3}$) (Found: C, 68.4; H, 6.3; N, 5.8. Calc. for $\left.\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NOS}: \mathrm{C}, 68.55 ; \mathrm{H}, 6.16 ; \mathrm{N}, 5.71 \%\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.76-4.16(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PhCHCH} \mathrm{C}_{2} \mathrm{OH}\right), 6.91(1 \mathrm{H}, \mathrm{m}$, aromatic H$), 6.98(1 \mathrm{H}, \mathrm{m}$, aromatic H) and $7.15-7.32(6 \mathrm{H}, \mathrm{m}$, aromatic H$) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$, isobutane) $246\left(\mathrm{M}^{+}+1\right)$. Red-Al ($26.2 \mathrm{mmol} ; 3.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene) was then added dropwise to a stirred solution of the imine $8(4.0 \mathrm{~g}, 16.3 \mathrm{mmol})$ in toluene $\left(50 \mathrm{~cm}^{3}\right)$ at $-58^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred for 20 h at room temperature, the reaction mixture was treated with water $\left(5 \mathrm{~cm}^{3}\right)$. The resulting white precipitate was filtered off, and the filtrate was concentrated under reduced pressure to leave the amino alcohol $\mathbf{3 b}$ as a yellowish oil. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $97: 3$ ratio of diastereoisomers, which were separated by column chromatography on silica gel with diethyl ether-hexane (2:1). For the isomer ($1^{\prime} S, 2 R$)-3b
(major product); colourless plates; yield 77%; m.p. $62{ }^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{D}^{25}-166.92$ (c 1.03, CHCl_{3}) (Found: $\mathrm{C}, 68.0 ; \mathrm{H}$, 7.0; N, 5.7. Calc. for $\mathrm{C}_{14} \mathrm{H}_{17}$ NOS: C, 67.99; H, 6.93; N, 5.66\%); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45(3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CHMe}), 1.63(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 3.51\left(1 \mathrm{H}, \mathrm{dd}, J 4.3\right.$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.62(1 \mathrm{H}, \mathrm{dd}, J$ 9.2 and $\left.10.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and 9.2 , $\mathrm{PhCHCH}_{2} \mathrm{OH}$), $3.98(1 \mathrm{H}, \mathrm{q}, J 6.1, \mathrm{CHMe}), 6.80(1 \mathrm{H}, \mathrm{m}$, aromatic H$), 6.93(1 \mathrm{H}, \mathrm{m}$, aromatic H$)$ and $7.25-7.34(6 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z\left(\mathrm{CI}\right.$, isobutane) $248\left(\mathrm{M}^{+}+1\right)$.

Condensation of the Amino Alcohol 3a-b with Aldehyde Dimethyl Acetals.-The reaction was carried out by using the amino alcohol ($1^{\prime} S, 2 R$)-3a-b (3.81 mmol), an aromatic aldehyde dimethyl acetal [benzaldehyde dimethyl acetal, thio-phene-2-carbaldehyde dimethyl acetal (11.43 mmol)] and catalytic amount of 4-methylbenzenesulfonic acid in toluene (30 cm^{3}). Work up as previously described for compounds $\mathbf{1 0 a} \mathbf{- b}$, gave an oily product $12 \mathbf{a}-\mathbf{b}$ which was purified by column chromatography on silica gel with hexane-ethyl acetate (4:1).
(1'S,2R,4R)-2,4-Diphenyl-N-(1'-phenylethyl)oxazolidine 12a. Colourless oil; yield $72 \% \cdot{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $92: 8$ ratio of diastereoisomers, which were inseparable by column chromatography. An analytical sample was purified by Kugelrohr distillation; oven temperature $220{ }^{\circ} \mathrm{C}(7.0 \mathrm{mmHg}) ;[\alpha]_{\mathrm{D}}^{25}+18.32(c 1.10, \mathrm{EtOH})$ (Found: C , 83.8; H, 7.0; N, 4.3. Calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 83.85 ; \mathrm{H}, 7.04$; N, $4.25 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$; for the (${ }^{\prime} S, 2 R, 4 R$)-isomer (major product); $1.18(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}), 3.78(1 \mathrm{H}, \mathrm{t}, J 7.9$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.01(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{C} H \mathrm{Me}), 4.01-4.20(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCHCH}_{2} \mathrm{O}\right), 5.34(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHO}), 7.11-7.40(12 \mathrm{H}, \mathrm{m}$, aromatic H) and $7.53-7.62(3 \mathrm{H}, \mathrm{m}$, aromatic H$) ; m / z(\mathrm{CI}$, isobutane) $330\left(\mathbf{M}^{+}+1\right)$.
(1'S,2R,4R)-4-Phenyl-2-(2-thienyl)-N-[1'-(2-thienyl)ethyl]oxazolidine $\mathbf{1 2 b}$. Colourless oil; yield $72 \% \cdot{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a 97:3 ratio of diastereoisomers, which were inseparable by column chromatography. An analytical sample was purified by Kugelrohr distillation; oven temperature $260^{\circ} \mathrm{C}(7.0 \mathrm{mmHg}) ;[\alpha]_{\mathrm{D}}^{25}+11.20(c 2.09, \mathrm{EtOH})$ (Found: $\mathrm{C}, 67.0 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.0$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NOS}_{2}$: C, $66.85 ; \mathrm{H}, 5.61 ; \mathrm{N}, 4.10 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$; for the ($1^{\prime} S, 2 R, 4 R$)-isomer (major product); $1.35(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{CHMe}), 3.80\left(1 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and $\left.9.2, \mathrm{CH}_{2} \mathrm{O}\right), 4.09(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and $\left.8.5, \mathrm{PhCHCH}_{2} \mathrm{O}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}, J 6.7\right.$ and $\left.9.2, \mathrm{CH}_{2} \mathrm{O}\right), 4.30$ ($1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe}$), $5.90(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHO})$ and 6.86-7.42 (11 H, m, aromatic H$) ; m / z\left(\mathrm{CI}\right.$, isobutane) $342\left(\mathrm{M}^{+}+1\right)$.

Reaction of the Oxazolidines (1'S,2R,4R)-12a-b with Methylmagnesium Bromide.-Methylmagnesium bromide (23.3 mmol , $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in diethyl ether) was added dropwise to a stirred solution of the oxazolidine $\mathbf{1 2 a - b}(21.3 \mathrm{mmol})$ in dry THF ($30 \mathrm{~cm}^{3}$) at room temperature, under nitrogen, over a 10 min period. After the reaction mixture had been refluxed for 48 h, it was poured into saturated aqueous NaHCO_{3}, the phases were separated, and the aqueous phase was extracted with diethyl ether ($2 \times 10 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave the amino alcohols $5 \mathbf{5 - b}$ as an oily residue, which was purified by column chromatography on silica gel with ethyl acetate-hexane ($3: 1$).
(1'S,2R)-2-[N-Bis(1'-phenylethyl)amino]-2-phenylethanol 5a. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $95: 5$ ratio of diastereoisomers, which were separated by column chromatography. For the ($1^{\prime} S, 2 R$)-isomer (major product); colourless
prisms; yield 71%; m.p. $168^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}^{25}-117.79(c 1.37, \mathrm{EtOH})$ (Found: C, 83.3; H, 7.9; N, 3.9. Calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}: \mathrm{C}, 83.44 ; \mathrm{H}, 7.88 ; \mathrm{N}, 4.05 \%$); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.56(6 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CHMe}), 1.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $4.06\left(1 \mathrm{H}, \mathrm{dd}, J 5.5\right.$ and $\left.9.8, \mathrm{CH}_{2} \mathrm{OH}\right), 4.16(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCHCH} \mathrm{H}_{2} \mathrm{OH}\right), 4.27(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{C} H \mathrm{Me}), 6.70(5 \mathrm{H}, \mathrm{m}$, aromatic H) and $7.13-7.19(10 \mathrm{H}, \mathrm{m}$, aromatic H$) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$, isobutane) $346\left(\mathrm{M}^{+}+1\right)$.
(1'S,2R)-2-Phenyl-2-\{N-bis[1'-(2-thienyl)ethyl]amino\}ethanol 5 b . ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a $96: 4$ ratio of diastereoisomers, which were separated by column chromatography. For the ($1^{\prime} S, 2 R$)-isomer (major product); colourless prisms; yield 68%; m.p. $107^{\circ} \mathrm{C}$ (from ethyl acetatehexane); $[\alpha]_{D}^{25}-25.00(c 1.01$, EtOH) (Found: C, 67.4; H, 6.5; N, 3.9. Calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NOS}_{2}: \mathrm{C}, 67.21 ; \mathrm{H}, 6.49 ; \mathrm{N}, 3.92 \%$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.64(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}), 1.65(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 4.03-4.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.23(1 \mathrm{H}, \mathrm{t}, J 6.7$, $\left.\mathrm{PhCHCH}_{2} \mathrm{OH}\right), 4.56(2 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHMe}), 6.59(2 \mathrm{H}, \mathrm{d}, J 3.7$, aromatic H$), 6.84-6.92(4 \mathrm{H}, \mathrm{m}$, aromatic H$)$ and 7.11-7.24 (5 H, m, aromatic H$) ; m / z\left(\mathrm{CI}\right.$, isobutane) $358\left(\mathbf{M}^{+}+1\right)$.

Oxidation of the Amino Alcohols 15a-b with Lead Tetra-acetate.-The reaction was performed as previously described for the amino alcohols ($1^{\prime} R, 2 R$)-5a-b, using compounds $\left(1^{\prime} S, 2 R\right)-5 a-b(1.0 \mathrm{mmol})$ and lead tetraacetate $(0.89 \mathrm{~g}$, 2.0 mmol) in benzene ($25 \mathrm{~cm}^{3}$) to yield the amine ($1 S, 1^{\prime} S$)- $\mathbf{6 a - b}$.
(1S, 1'S)-Bis(1 -phenylethyl)amine 6a. Colourless oil; yield 84%. An analytical sample was purified by Kugelrohr distillation; oven temperature $160^{\circ} \mathrm{C}(7.0 \mathrm{mmHg}) ;[\alpha]_{\mathrm{D}}^{25}-151$ (c $2.2, \mathrm{EtOH}$), whose spectral data were identical with those reported. ${ }^{6}$
(1S,1'S)-Bis[1-(2-thienyl)ethyl]amine 6b. Yellowish solid; yield $72 \% ;[\alpha]_{\mathrm{D}}^{25}-99.0$ (c $\left.0.48, \mathrm{EtOH}\right)$, which was further purified by recrystallization of its HCl salt. Colourless needles; m.p. $192^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[\alpha]_{D}-49.1$ (c 1.02 , $\mathrm{EtOH})$. The spectral data of this product was identical with the major product obtained by the reaction of the amino alcohol ($1^{\prime} R, 2 R$)-5b on the basis of ${ }^{1} \mathrm{H}$ NMR spectral comparison.

References

1 (a) H. Takahashi, T. Tubuki and K. Higashiyama, Synthesis, 1992, 681 ; (b) H. Takahashi, B. C. Hsieh and K. Higashiyama, Chem. Parm. Bull., 1990, 38, 2429; (c) H. Takahashi, H. Niwa and K. Higashiyama, Heterocycles, 1988, 27, 2099.
2 K. Higashiyama, H. Inoue and H. Takahashi, Tetrahedron, 1994, 50, 1083.

3 K. Higashiyama, K. Nakahata and H. Takahashi, Heterocycles, 1992, 33, 17.
4 K. Higashiyama, K. Nakahata and H. Takahashi, J. Chem. Soc., Perkin Trans. 1, 1994, 351.
5 J. Leonard, J. D. Heweitt, D. Ouali, S. J. Simpson and R. F. Newton, Tetrahedron Lett., 1990, 31, 6703; R. P. C. Cousins and N. S. Simpkins, Tetrahedron Lett., 1989, 30, 7241; H. Hogeveen and W. M. P. B. Mong, Tetrahedron Lett., 1986, 27, 2767; M. B. Eleveld and H. Hogeveen, Tetrahedron Lett., 1986, 27, 631; J. K. Whitesell and S. W. Felman, J. Org. Chem., 1980, 45, 755.

6 M. B. Eleveld, H. Hogeveen and E. P. Schudde, J. Org. Chem., 1986, 51, 3635.
7 C. K. Miao, R. Sorcek and P.-J. Jones, Tetrahedron Lett., 1993, 34, 2259; C. Agami and T. Pizk, Tetrahedron, 1985, 41, 537; A. H. Beckett and G. R. Jones, Tetrahedron, 1977, 33, 3313.

Paper 4/05497K
Received 9th September 1994
Accepted 27th September 1994

